A Posteriori Error Estimators Based on Equilibrated Fluxes
نویسندگان
چکیده
We consider the conforming of finite element approximations of reactiondiffusion problems. We propose new a posteriori error estimators based on H(div)conforming finite elements and equilibrated fluxes. It is shown that these estimators give rise to an upper bound where the constant is one in front of the indicator, up to higher order terms. Lower bounds can also be established with constants depending on the shape regularity of the mesh and the local variation of the coefficients. We further analyze the convergence of an adaptive algorithm. The reliability and efficiency of the proposed estimators are confirmed by various numerical tests. 2000 Mathematics Subject Classification: 65N30, 65N15, 65N50.
منابع مشابه
Some improvements to the flux-type a posteriori error estimators
This paper presents explicit equilibrated fluxes for the local pure-Neumann problems used by the a posteriori error estimator in Ainsworth and Oden [M. Ainsworth, J.T. Oden, A procedure for a posteriori error estimation for h–p finite element methods, Comput. Methods Appl. Mech. Engrg. 101 (1992) 73–96]. We modify the target function for minimization to obtain new equilibrated fluxes in a weigh...
متن کاملNumerical Analysis and Scientific Computing Preprint Seria An Equilibrated A Posteriori Error Estimator for the Interior Penalty Discontinuous Galerkin Method
Interior Penalty Discontinuous Galerkin (IPDG) methods for second order elliptic boundary value problems have been derived from a mixed hybrid formulation of the problem. Numerical flux functions across interelement boundaries play an important role in that theory. Residual type a posteriori error estimators for IPDG methods have been derived and analyzed by many authors including a convergence...
متن کاملRobust equilibrated a posteriori error estimators for the Reissner-Mindlin system
We consider a conforming finite element approximation of the Reissner-Mindlin system. We propose a new robust a posteriori error estimator based on H(div ) conforming finite elements and equilibrated fluxes. It is shown that this estimator gives rise to an upper bound where the constant is one up to higher order terms. Lower bounds can also be established with constants depending on the shape r...
متن کاملAn Equilibrated A Posteriori Error Estimator for the Interior Penalty Discontinuous Galerkin Method
Interior Penalty Discontinuous Galerkin (IPDG) methods for second order elliptic boundary value problems have been derived from a mixed variational formulation of the problem. Numerical flux functions across interelement boundaries play an important role in that theory. Residual type a posteriori error estimators for IPDG methods have been derived and analyzed by many authors including a conver...
متن کاملAnalysis of the Equilibrated Residual Method for a Posteriori Error Estimation on Meshes with Hanging Nodes
The equilibrated residual method is now accepted as the best residual type a posteriori error estimator. Nevertheless, there remains a gap in the theory and practice of the method. The present work tackles the problem of existence, construction and stability of equilibrated fluxes for hp-finite element approximation on hybrid meshes consisting of quadrilateral and triangular elements, with hang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Meth. in Appl. Math.
دوره 10 شماره
صفحات -
تاریخ انتشار 2010